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Abstact

In the paper, orbital dynamics, regular or chaotic, of globular clusters (GCs) in the central region of the Galaxy, which is subject
to the greatest influence of the rotating bar, has been studied. Such methods for determining chaos as Poincar’e sections and spectral
methods have been compared. The relationship between the Poincar’e sections and the spectral characteristics of the orbits has
been estimated. The sample includes 45 globular clusters in the central region of the Galaxy with a radius of 3.5 kpc. To form the
6D-phase space required for integrating the orbits, the most accurate astrometric data to date from the Gaia satellite, as well as new
refined average distances, have been used. The following, most realistic, bar parameters have been adopted: mass 1010MQ©, length
of the major semi-axis of the bar model in the form of a triaxial ellipsoid is 5 kpc, angle of rotation of the bar axis is 250, rotation
velocity is 40 km s—1 kpc —1. The result of the study is that a 100% correlation between the classification by Poincar’e sections
and the spectral characteristics of the orbits has been established. Consequently, the classification by Poincar’e sections can be
replaced by a more visual analysis of the amplitude spectra of the orbits. Thus, two lists of GCs: with regular and chaotic dynamics
have been compiled. The GCs with varying degrees of orbital chaos have separately been distinguish.
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Introduction

This study is essentially a continuation of [1-3] devoted to the study of the orbital dy- namics (regular or chaotic) of globular
clusters in the central region of the Galaxy. As in previous studies, the sample includes 45 globular clusters in the central region of
the Galaxy with a radius of 3.5 kpc. To form the 6D-phase space required for orbit integra- tion, the most accurate astrometric data
to date from the Gaia satellite [4], as well as new refined mean distances [5], were used. The following most realistic parameters
of the bar that are known from the literature [6, 7] are adopted: the mass is 1010M(©, the length of the major semi-axis is 5 kpc,
the rotation angle of the bar axis is 250, and the rotation speed is 40 km s—1 kpc —1. Since GCs in the central region of the Galaxy
are subject to the greatest influence from the elongated rotating bar, the question of the nature of the orbital motion of GCs (regular
or chaotic) is of great interest. For example, in [8], it is shown that the main share of chaotic orbits must be precisely in the bar
region. This study is aimed at establishing the connection between Poincar’e sections and spec- tral characteristics of orbits as
functions of time. Spectral methods include, in particular, the frequency method [9—13]. The authors of these studies showed that
it is possible to measure the stochasticity of the orbit based on the shift of fundamental frequencies deter- mined over two
consecutive time intervals. Another method of this class is our recently proposed method [3] based on calculating the orbital power
spectrum as a function of time and calculating the entropy of the power spectrum as a measure of orbital chaos. The paper is
structured as follows. In the first section, the accepted potential models: the axisymmetric potential and the non-axisymmetric
potential including a bar is briefly described. In the second section, links to the used astrometric data, as well as the method for
forming the GC sample, are provided. In the third section, the methods used to esti- mate the regularity/chaotic nature of motion:
the Poincar e section method, the frequency method, and the spectral methods we proposed are described. In the fourth section, the
obtained results are analyzed and a connection between the Poincar’e cross sections and the spectral characteristics of the orbits
are established. The main results of the study are formulated in the Conclusions section.

1galactic Potential Model

1.1 Axisymmetric Potential



The axisymmetric gravitational potential of the Galaxy traditionally used by us (see, for example, [2]) for integrating the orbits of
GCs is represented as the sum of three components: the central spherical bulge ®b(r(R, Z)), disk ®d(r(R, Z)), and a massive

spherical dark matter halo ®h(r(R, Z)):

D(R, Z) = Ob(r(R, Z)) + ®d(r(R, Z)) + Oh(1(R, Z)). (1)
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Figure 1: Rotation curve of the Galaxy with an axisymmetric potential without a bar (black line) and a non-axisymmetric potential
including a bar (red line).

A cylindrical coordinate system (R, v, Z) with the origin of coordinates at the center of the Galaxy is used here. In a rectangular
coordinate system (X, Y, Z) with the origin at the center of the Galaxy, the distance to the star (spherical radius) will be equal to
2=X2+Y 2+Z7Z2=R2+ Z2, while the X axis is directed from the Sun to the galactic center, the Y axis is perpendicular to the
axis in the direction of rotation of the Galaxy, and the Z axis is perpendicular to the galactic plane (X, Y ) towards the north galactic
pole. The gravitational potential is expressed in units of 100 km2 s—2, distances are in kpc, masses are in units of galactic mass,
Mgal =2.325 x 107TMQ, corresponding to the gravitational constant of G = 1.

Axisymmetric bulge potentials ®b(r(R, Z)) and disk ®d(r(R, Z)) are presented in the form proposed in [14]:

where Mb and Md are the masses of components; and bb, ad, and bd are the scale parameters of components in units of kpc. The
halo component (NFW) is presented according to [15]:

O (r)=-MhInl +r! @)
r ah

where Mh is the weight, and ah is the scale parameter. In Table 1, the values of the parameters of the adopted model of the galactic

potential are shown.
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Table 1: Values of the parameters of the galactic potential model, Mgal =2.325 x 107M(©

The triaxial ellipsoid model was chosen as the central bar potential [6]: ®bar

M
Ppar = — 5 -+
{¢* 1 &= +[Yab)~

2,172
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where X =R cos 3, Y =R sin 9, a, b, ¢ are three semi-axles of the bar, qb is the scale parameter of the bar (length of the largest
semi-axis of the bar); 9 = 6 — Qbt — 0b, tg(0) = Y/X, Qb is the circular velocity of the bar, t is the integration time, and 6b is the
orientation angle of the bar relative to the galactic axes X, Y that is measured from the line connecting the Sun and the center of
the Galaxy (axis X) to the major axis of the bar in the direction of rotation of the Galaxy. Based on information in the literature, in
particular in [7], the following were used as bar parameters: Mbar = 430Mgal, Qb = 40 km s—1 kpc —1, gb = 5 kpc, and 6b = 250.
The accepted bar parameters are listed in

Table 1. To integrate the equations of motion, we used Runge—Kutta algorithm of the fourth order.

The value of the peculiar velocity of the Sun relative to the local standard of rest was taken to be equal to (u©®, v, w®)=(11.1,
12.2,7.3) £(0.7, 0.5, 0.4) km s—1 according to [16]. The elevation of the Sun above the plane of the Galaxy is taken to be 16 pc in
accordance with [17].

For comparison, the obtained model rotation curves: an axisymmetric potential (black line) and a potential with a bar (red line) are
shown in Fig. 1.

2 Data

The data on the proper motions of GCs are taken from a new catalogue [4] compiled based on observations of Gaia EDR3. The
average values of distances to globular clusters are taken from [5]. The GCs catalogue [18] at our disposal contains 152 objects.
Globular clusters from this set belonging to the bulge/bar region were selected in accordance with a purely geometric criterion
considered in [19] and also used by us in [20]. It is very simple and consists of selecting GCs whose apocentric distance of orbits
does not exceed the bulge radius, which is usually taken to be 3.5 kpc. Orbits were calculated in an axisymmetric potential. The
full list of 45 objects in our sample is presented in Table 2, which the results of the analysis of the orbital chaoticity/regularity of
GCs (the first column gives the ordinal number of the GCs, the second column gives the name of the GCs) are shown.

g 0 | N [N f " . - "

|| NGO Wy iy " | (o Ry L " L e
' " T ) " (W] Oy " . i
NOA 43 i R Ri IR I« =) ) i (]

‘ 4 i )| oag (&) R 1) 1y Ko i
NG (] " il " NGO < oy " I" (N}
NG " (N} [ ( | 9 NGt (R (L3 LY R Ry

il " (] ( W INGC (R e " LTI (14

K Husher ( ) (W] (L8] (L8] | [LR C) iR IR (L8] [L1]
(L (L8] Ri i R 1 ) NGO u25 N (I8 i« (8] (18]

w O Cro| ot ( ¢ O INGORE %y o " o it

[ K| in " ) ® [ Mamis " ] o i Ky

2| NG VLR Ri < Ri § NGO s Ri IR " R ik
1| Buxh o 1R ¥ ¥ 1l EA450-T4 In L il I IN
| X i o <ol (N 1« NGO O L) ey Wy R lim
| i 1<y C) (&) w | NG " R " ( (

| Byech K LI R H W | tyor (R ey iRy LTI (1)
NGO sl ( i© ( Ri 1 NG D 1R Ri e i R

1% e ¥ R n N e 4 NG 1 Cy (L8 " o (18]

| GOt " <) O | | a) | N [ (¥ %) « o
N Ter L i i L) K NGO " (3] e i L3}
NGO ss22 LA i ] 1R 1y NG 1y o i i W
NG ) " i ) " (N iy ey (ST (1

3 Methods

We recall the main provisions of the methods considered in this study for determining the nature of orbital dynamics: chaotic

regular. A more detailed description is given in [1-3].
3.1 Poincar’e Sections

The algorithm used to construct the mappings is as follows [21]:

or



1. We consider the phase space (X, Y, Vx, Vy).

2. We exclude Vy, using the law of conservation of the generalized energy integral (Jacobi integral) and move into space (X, Y,
Vx).

3. We define a plane of Y = 0, we will designate the points of intersection with the orbit on the plane (X, Vx). We take only those
points, where Vy > 0. If the intersection points of the plane form a continuous smooth line (or several sepa- rated lines), then the
motion is considered regular. In the case of chaotic motion, instead of being located on a smooth curve, the points fill a two-
dimensional region of phase space, and sometimes the effect of points sticking to the boundaries of islands corresponding to ordered
motion occurs [22].

In this paper, we present the Poincar’e sections obtained by us in [1].
3.2 Frequency Method

The method consists of measuring the orbital chaos based on the shift of fundamental frequencies determined over two consecutive
time intervals. For each frequency component fi, a parameter called frequency drift is calculated:

Qufe1) — Rufr2)

Iglaf ) = lg
Q4w
e 1

where i defines the frequency component in Cartesian coordinates (i.e. 1g(Afx), 1g(Afy), and 1g(Afz))). Then, the largest value of
these three frequency drift parameters is at- tributed to the frequency drift parameter 1g(Af ). The higher the value 1g(Af), the more
chaotic the orbit. In order to achieve high accuracy, we took an integration time of 120 billion years, almost an order of magnitude
greater than the age of the Universe. In this study, we also used the classification results given in [1].

3.3 Spectral Analysis of Orbits

The spectral analysis of orbits proposed by us in [3] is based on the calculation of the mod- ulus of the discrete Fourier transform
(DFT) of uniform time series of radial distances of orbital points from the center of the Galaxy, rn, calculated based on their X, Y,
Z galactic coordinates,X(tn), Y (tn), Z(tn) as functions of time: r(tn) = X(tn)2 + Y (tn)2 + Z(tn)2, where n =0, ..., N — 1 (N is the
length of the row). Thus, the formula for the DFT modulus (amplitude spectrum) of a sequence rn will look like this:

A= rir, JexXpi=) ) |, k=0 N -1 N

\ f
=0 N

In this case, the length of the row is selected equal to N = 2a, where a is the positive integer (> 0 ), so that the fast Fourier transform
algorithm can be used to calculate the DFT. The required length of the series is achieved by supplementing the real series with
zeros. In our case, the length of the actual sequences is 120 000, since we integrate the orbits back 120 billion years with an
integration interval of 1 million years. Before calculating the DFT, we first center the coordinate series (i.e., get rid of the constant
component), then complement the resulting sequence rn zero readings at n > 120000 until the length of the entire analyzed sequence
is reached, N = 262144 = 218. Note that supplementing the initial sequence with zeros is also useful from the point of view of
increasing the accuracy of the coordinates of the spectral components. Since the interval between the readings of the sequences in
time is equal to 8t = 0.001 billion years, then the analyzed frequency range, which is a periodic function, is F = 1/At= 1000 Gyr—1.
The frequency discrepancy is AF = F/N = 0.03815 Gyr—1. Next, for convenience, we will indicate on the graphs not the physical
frequencies, but the sample numbers k (or K) of the discrete Fourier transform (2). Transition from k to the physical frequency can
be produced by the formula: f=k % AF = k x 0.003815. Next, the obtained power spectrum of the GCs orbit is normalized so that
the maximal value is equal to unity. The decision on the nature of the orbital dynamics of GCs is determined by calculating the
Shannon entropy of the normalized amplitude spectrum r k as measures of chaos [23]:
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where M is a scale factor that is introduced for the convenience of presenting numerical results. Obviously, the higher the entropy
value, the higher the degree of chaos of the orbit. In this case, we analyze both the reference orbits and the shadow ones obtained
by perturbing the initial phase point, as accepted in [1-3], as follows: X1 = X0 + X0 x 0.00001, Y1 =Y0 + Y0 x 0.00001, andZ1
=70+ Z0 x 0.00001.

3.4 Spectral Analysis of Orbital Coordinates X and Vx
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In this work, with the aim of establishing a connection between the Poincar’e sections on the plane (X, Vx) and the spectral
characteristics of the orbits, we propose to calculate the modulus of the discrete Fourier transform of uniform time series of
coordinates X(tn) and Vx(tn): As an example, the obtained amplitude spectra for two GCs: NGC 6266 and NGC 6355 with regular
and chaotic dynamics, respectively, are shown in Fig. 2. As can be seen from the figure and as the analysis of the GC spectra of
the entire sample shows, the spectra of the coordinates X and Vx are similar. Therefore, in order to save space, we present below
only the spectra of -coordinates in
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Figure. 3. The same as in the case of the spectral method proposed in [3], regular orbits corre- spond to narrow linear spectra, while
chaotic orbits correspond to wide spectra. As will be shown in the next section, this follows, from a comparison of the Poincar’e
sections with the results of a spectral analysis, which is the goal of this paper.
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4 Results

A graphical representation of the spectral analysis results in comparison with the results obtained previously [1-3] (Poincar’e
sections, frequency method, and visual analysis) for the entire sample of 45 GCs is given in Fig. 3, and the results of the
classification of orbits into regular (R) and chaotic (C) are given in Table 2 (the first column, as a reminder, shows the serial number
of the GCs, while the second column shows the name of the GCs). The proposed method was applied to both reference orbits and
shadow orbits. The integration of orbits was carried out, as was already noted above, back 120 billion years. In Fig. 3, it is shown
from left to right: (1) projections of orbits onto the plane (X—Y ), (2) radial values of the initial (reference) and perturbed (shadow)
orbits depending on time (reference orbits are shown in yellow, shadow orbits are in purple), (3) Poincar’e sections on the plane



(X, Vx), (4)X - coordinates of Poincar’e sections, (5)Vx - coordinates of Poincar’e sections, (6) normalized power spectra of X -
values of the reference and

Figure 2: Normalized power spectra of -coordinates (left), -coordinates (right) of the reference and shadow orbits as functions of
time that are shown in black and red, respectively. The upper panels refer to GC of NGC 6266 with regular dynamics, and the
lower panels refer to GC of NGC 6355 with chaotic dynamics. shadow orbits as functions of time that are shown in black and red,
respectively, and (7) illustration of the frequency method (the power spectrum of the first half of the time series is shown in red
and the second half is shown in black). The names of the GCs are shown in the second panels from the left. The most obvious
illustration of the discrepancy between the reference and shadow phase points are columns 1 and 2 in Fig. 3, which list the reference
and shadow orbits for each GC in the order (top to bottom) as they are listed in Table 2. The first column contains X, Y projections
of orbits constructed in the rotating bar system over a time interval of [-11, —12] billion years. The second column shows the radial
values of the orbit r(t) on the interval of [0, —12] billion years that is comparable to the age of both GCs and the Universe. In these
graphs, reference orbits are shown in yellow, and shadow orbits are shown in purple. As can be seen, many objects on the graphs
have purple color only. This means that the shadow orbit is almost identical to the reference orbit (yellow lines are covered with
purple ones). Such objects include GCs with regular orbits. In the graphs of GCs with chaotic orbits, both purple and yellow lines
are visible, which makes it possible to judge qualitatively the degree of chaos of the orbits. In the third column, the Poincar’e
sections on the plane (X, Vx) are shown. Dependence of coordinates X and Vx on the counting number are given in the fourth and
fifth columns, respectively. The regularity of the distribution of coordinates X and Vx characterizes the regularity of orbital
dynamics, and this is reflected in the Poincar’e sections. As in the case of the spectral method proposed in [3], as well as the
frequency method, the normalized amplitude spectra of the reference and shadow orbits that are given in the sixth and seventh
columns have the character of line spectra for GCs with regular dynamics and broad spectra for GCs with chaotic dynamics.

The obtained amplitude spectra of coordinates X and Vx show a one-hundred-percent correlation with the nature of the distribution
of points on the Poincar’e sections, which is reflected in the sixth and seventh columns of Table 2, which also present the results
of'the classification of GCs with regular and chaotic orbits from previous studies [1, 3], obtained using: the spectral-entropy method
[3] (third column of the table), the frequency method (fourth column) [1], and the visual method (fifth column) [1]. Based on an
analysis of the table, a high correlation between the results of GC classification by different methods (not less than 82.5%) is shown.
Due to the established connection between Poincar’e sections and the spectral method for the analysis of orbital dynamics instead
of Poincar’e sections, the decision-making process for which is characterized by some subjectivity, a more visual method of the
spectral analysis can be used. From the fact that the classification by Poincar e sections completely coincides with the classification
by the width of the amplitude spectrum, we have defined two lists. The first list includes 25 globular clusters with regular dynamics
(R) (NGC 6266, Terzan 4, Liller 1, NGC 6380, Terzan 1, Terzan 5, NGC 6440, Terzan 6, Terzan 9, NGC 6522, NGC 6528, NGC
6624, NGC 6637, NGC 6717, NGC 6723, Terzan 3, Pismis 26, NGC 6569,NE456-78, NGC 6540, Djorg 2, NGC 6171, NGC
6316, NGC 6539, and NGC 6553) and a second list of 20 globular clusters with chaotic dynamics (C) (NGC 6144, E452—-11, NGC
6273, NGC 6293, NGC 6342, NGC 6355, Terzan 2, BH 229, NGC 6401, Pal 6, NGC 6453, NGC 6558, NGC 6626, NGC 6638,
NGC 6642, NGC 6256, NGC 6304, NGC 6325, NG 6388, and NGC 6652). Furthermore, from the second list, we consider it



appropriate to select GCs with varying degrees of chaos using the entropy measure. For example, we classified GCs NGC 6144,
NGC 6273, NGC 6304, NGC 6325, and NGC 6388 as GCs with weakly chaotic dynamics. GCs E452—-11, NGC 6355, Terzan 2,
BH 229, NGC 6401, Pal 6, NGC 6558, NGC 6638, NGC 6642, and NGC 6652 exhibit strong chaos.

Conclusions

The following main results were obtained: 4.1 A direct, 100% connection has been established between the Poincar’e sections of
regular and chaotic orbits and the spectral characteristics of the orbits. The wider the spectrum, the higher the entropy and the more
chaotic the orbital character is shown by the Poincar’e section. Thus, for the analysis of orbital dynamics, instead of Poincar’e
sections, the classification by which is somewhat subjective, a more visual method of spectral analysis of orbits can be used. 4.2
Based on the established relationship between the Poincar’e sections and the spectral characteristics of the orbits, of 45 GCs in the
central region of the Galaxy with a radius of 3.5 kpc, a list of 25 globular clusters with regular dynamics (R) was determined:

NGC6266, Terzan4, Lillerl, NGC6380, Terzanl, Terzan5, NGC6440, Terzan6, Terzan9, NGC6522, NGC6528, NGC6624,
NGC6637, NGC6717, NGC6723, Terzan3, Pismi26, NGC6569, E456-78, NGC6540, Djorg2, NGC6171, NGC6316, NGC6539,
and NGC6553 and a list of 20 globular clusters with chaotic dynamics (C): NGC6144, E452-11, NGC6273, NGC6293, NGC6342,
NGC6355, Terzan2, BH229, NGC6401, Pal6, NGC6453, NGC6558, NGC6626, NGC6638, NGC6642, NGC6256, NGC6304,
NGC6325, NGC6388, and NGC6652. 4.3 From the list of GCs with chaotic dynamics, one can identify GCs with varying degrees
of orbital chaos based on a comparison of the entropy measure. We classified GCs NGC6144, NGC6273, NGC6304, NGC6325,
and NGC6388 as weakly chaotic. GCs E452—11, NGC 6355, Terzan 2, BH 229, NGC 6401, Pal 6, NGC 6558, NGC 6638, NGC
6642, and NGC 6652 show strong chaos.
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