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Abstract 

In this study, the phototransformation of low-density polyethylene (LDPE), and polyvinyl chloride (PVC) was promoted 
in porous sulfur polymer nanocomposite under sunlight. In order to investigate the potential photo catalytic effects of   
porous sulfur polymer the effects of some operational conditions on the photoremoval yields of during the transforLDPE 
and PVC were studied. 99% and 96% for LDPE and PVC yields was at a PB concentration of 3 mg/l, at LDPE and PVC 

concentrations of 400 mg/l a a nanocomposite size and surface area of 10 micron and 0,098 m2/m,respectively, at 40 Oc 
temperature a a pH of 5.00 at a sun ligth power of 50 W/m2. The FTIR analysis showed that the -SSH sulfanes groups 
porous sulfur polymers disappeared at 909 cm−1 at So / PB mass ratios of 20:40 to 30: 60 and to 60:120. TGA analysis 
showed the thermal stability of the porous sulfur polymer nanocomposites. XRD analysis showed that the persitance of 
the nanocomposite with the presence of pure salt at 2θ=31°, 46°, 56°, and 66° after treatment.  

Key words: low-density polyethylene (ldpe); polyvinyl chloride (pvc); porous sulfur polymer nanocomposite; 

photodegradation; microplastic 

Introduction 

Microplastics generated from the degradation of plastics in the environment 
due to sunlight, air, moisture, and heat [1,2]. They can contain som toxic   
compounds which can threaten the ecocystem.  Flora and fauna can be 
exposed to the aforementioned pollutants and they can be ingested and eaten 
due to their minimized size liken nanometer and micrometer. 

 [3,4]. This toxicity of some microplastics can cause inhibitions to the aquatic 

and terrestrial Organisms. The presence of microplastics in wastewater was 
investigated by a lot of recent studies The main source providing the 
disturbances and emissions of these pollutants was the surface runoffs [5-7]. 
On the other hand, the concentrations of some personal care products 
containing fragments increased. Some microplatics cannot be treated in 
conventional treatment plants and some microplastics can be released to the 
rivers and and to the oceans [8-10].  The existing technologies used in the 
wastewater treatment plants (coagulation, filtration, and advanced oxidation 

processes) cannot removed effectively and large volumes of   wastewaters 
containing microplastics was discharged to the receiving water bodies. In last 
decades a lot of microplastic removal processes was developed for 
microplastic removal like adsorption, magnetic extraction, membrane 
filtration, coagulation and photodegradation [11-13]. Among these 
processes, photodegradation is a promising process to degrade the   
microplastics under UV ligth. Under this ligth, the electrons in the   the 
nanocomposites activated and generated electron-hole pairs resulting in    

reactive oxidizing species (ROS).  These species can then break down   the 
microplastics into harmless byproducts, such as carbon dioxide and water.  

 Polymeric materials such as low-density polyethylene (LDPE), high-density 
polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate 

(PET), polystyrene (PS), and polyvinyl chloride (PVC) are common 
materials under study due to their widespread use, particularly in the  
packaging industry,  which  contributes  to  microplastic  pollution  in  the 
World[14-17]. The biodegradability of   microplastic-based materials like 
polyurethanes (PU), polylactic acid (PLA), nylon, polycarbonates, and were 
studied [18-20]. Microplastics are decomposed through photodegradation 

and possible biodegradation, [21-24]. The physicochemical properties of 
polymers depend on environmental conditions such as weather conditions, 
temperature, irradiation and pH values. Microplastics in aqueous bodies are 
a potential threat to aquatic species and they were considered an emerging 
contaminant. They are not degraded, and they can adhere to animals when 
they enter the food chain. On the other hand, they can adsorb some harmful 
pollutants. 

Sulfur polymers have numerous applications like optoelectronic, 

superhydrophobic materials, and photochemical materials, biopolymers and 
proton-conducting electrolytes. The porous sulfur-containing polymers can 
be used to adsorpt the heavy metals. On the other hand, the photoactive 
properties of sulfur-containing polymers were reported. The porous sulfur-
containing polymers was used for removing organic contaminants from 
pharmaceuticals, personal care products, and endocrine disruptors.  

In this study low-density polyethylene (LDPE), and polyvinyl chloride 
(PVC) microplastics was choosen to remediate them with porous sulfur-

containing polymer using   1,3-diisopropenylbenzene via photodegradation. 
The effects of some operational parameters like concentration of pollutants 
and nanocomposite, surface area of nanocomposite, temperature, pH and 
light intensity on the   photodegradation yields of LDPE and PVC was 
studied.  

  Open Access       Research Article 

Clinical Research and Clinical Reports   
                                                             Delia Teresa Sponza*                                                                                                                                                        ClinicSearch 

 



Clinical Research and Clinical Reports                                                                                                                                                                                          Page 2 of 6 
Material and Methods 

Production of porous sulfur-containing polymer nanocomposite 

Elemental sulfur was heated under 190–210 °C in a magnetic stirring. Once 
completely molten then certain amount of 1,3-diisopropenylbenzene (PB) 
was added. So / PB mass ratio was varied from 20:40 to 30: 60 and to 60:120. 

The component was stirred, the still-liquid pre-polymer was transferred in a 
silicone cap. Te mixture was blended and it was maintained at 160 °C for 
6 h.  

Characterization of porous sulfur-containing polymer nanocomposite 

To characterization of porous sulfur-containing polymer, nitrogen 
adsorption/desorption isotherms were acquired at 79 K using a surface area 
analyzer (NOVA).  Scanning Electron Microscopy (SEM) imaging and 
Energy-Dispersive X-ray Spectroscopy (EDS) were performed using an FEI 

Inspect F system with an operational acceleration voltage of 10–20 kV. 
Fourier transformed infrared (FTIR) spectra were recorded using a Bruker 
Tensor 27 instrument over the wavenumber range of 500 to 4000 cm−1. 
Powder X-ray difraction patterns were performed by Panalytical X’Pert PRO 
MPD equipped PIXcel detector. Cu Kα radiation was utilized, and data were 
collected over a range of 5–70° using loose powder samples on thin Mylar 
flm within aluminium well plates. Termogravimetric analysis (TGA) (was 
conducted under an inert atmosphere on a TA Instruments TGA 5500. 

Heating was carried out at a heating rate of 10 ºC min−1, from room 
temperature to 600 °C.  

Analytical Measurements  

LDPE and PVC were analyzed by a gas chromatograph with a flame 
ionization detector using a TRACE GC gas chromatograph. It was provided 
with a 30 m × 0.32 mm Rtx-1 column. 

Photocatalytic studies 

Photocatalytic experiments were carried out in a laboratory scale reactor 
made of quartz with a volüme of 3 l. The photorector was a vertical tubular 
reactor, and the treated solution was circulated by a peristaltic pump 

operating with a speed of 20 l h−1. The loop contained also a sampling port 
and was fed with air at a rate of (2,0 cm3 s−1). 

Results and Discussion  

 FTIR analysis results  

Te extent of PB mass ration (60 and 120) indicates the consumption of 

double bonds during the crosslinking process (Figure 1). The -SSH sulfanes 
groups also in porous sulfur polymers disappeared at 909 cm−1 band in the 
FTIR spectra at So / PB mass ratios of 20:40 to 30: 60 and to 60:120 (Figure 
1). As a result, of polymerization the peaks associated with sulpfur monomer 
exhibited maximal peaks at 698 cm−1 band in the FTIR spectra (Figure 1). 
This showed the presence that C-S bond formation. The exhibited the peaks 
relevant to sulfur comonomer units which has an appearance at 690 cm−1 
band in the FTIR spectra,illustrating the  C-S bonds  

 

Figure 1: FTIR analysis results of PB nanocomposite at different S/ PB ratios 

TGA analysis results 

 In order to detect the thermal stability of porous sulfur polymers (PB), TGA 
analysis were performed. Figure 2 illustrates TGA thermograms of porous 

sulfur polymers at different percentages of varying weight percentages of 
sulfur and PB. Te graph depicts that the degradation of pure sulfur 

commences at approximately 190 °C, with complete weight loss (100%) 
observed around 283 °C. However, the PB exhibited a higher decomposition 
temperature than pure sulfur. Additionally, the PB had a residue at 600 °C, 

and this residual content increased with a rise in pollutant content within the 
composition. 

 

Figure 2: TGA analysis results 

XRD analysis results XRD patterns for pure sulfur and porous sulfur polymer nanocomposite after 
water treatment are presented in Figure 3.  In the case of pure sulpfur, 
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characteristic difraction peaks were discernible at 2θ=23°, 27°, 28°, 53°, and 
56°. However, these peaks were absent following the copolymerization 
reaction in polymers containing over 60% PB content. This absence suggests  

a transformation from crystalline monoclinic sulfur to a highly cross-linked 
amorphous copolymer structure. Te difraction peaks originating from pure 
salt (at 2θ=31°, 46°, 56°, and 66°) remained observable in PB afer water 
treatment. This persistence indicates the presence of residual table salt even 
afer the water washing treatment.  

 

 

Figure 3: XRD analysis results 

SEM analysis results 

SEM images of raw PB with a So to PB mass ratio of 20:40 before treatment 
indicated the pesence of a non-porous surface (Figure 4a). The SEM image 
indicates homogenous disturbances of salt and sulfur in the PS 

nanocomposite. Afer treatment, these salts were dissolved and a porous 
structure was generated (Figure 4b). The non homogenous structure of pore 
can be increased with salt. Figure 4c showed that the pores sizes increased. 
This increases the surface contour of the porurs media for increase the 
adsorption process at the beginning of photodegradation. [29-30]. 

   
a (magnification : 5µm) B (magnification : 5µm) C (magnification : 500 µm) 

Figure 4: SEM image of porous sulfur polymers at a So / PB mass ratio of 20:40 in raw PB (a), treated PB (b), treated PB(c) 

Effects of nanocomposite concentration 

The PB nanocomposite concentration was increased from 1 mg/l up to 5 mg/l 
with a S/PB ratio of 20:40 to detect the the optimal nnocomposite dose for 

maximal LDPE and   PVC photodegradation yields. The photocatalytic 
activity of LDPE and PVC enhanced when the PB concentration was 
increased from 1 mg/l to 2 and 3 mg/l (Table 1). The yields reached from 
70% - 72% to 84% and 88% and to 99% and 96% for LDPE and PVC at a 
PB concentration of 3 mg/l. Further increase of PB nanocomposite 
concentration showed sligthly   lowest photocatalytic activity. The LDPE 

and PVC yields decreased to 84% and 81% at 5 mg/l PB nanocomposite 
concentration. The photodegradation yields of LDPE and PVC pollutants are 
influenced by the active site and the photoabsorption of the catalyst used. 

Adequate loading of PB nanocomposite increases the generation rate of 
electron/hole pairs for enhancing the photodegradation of LDPE and PVC 
microplastics. High dose of the PB lowered the light penetration and reduces 
the photodegradation percentages of polutants. At high PB nanocomposite 
concentration the surface area decreased while the size of the nanocomposite 
increased [31-33].  

 

PB nanocomposite concentration (mg/l) LDPE Photodegradation yields (%) PVC Photodegradation yields(%) 

1 72 70 

2 88 84 

3 99 96 

4 94 90 

5 84 81 

Table 1: Effect of nanocomposite concentration on the photodegradation yields 

Effect of LDPE and PVC concentrations 

The effect of initial pollutant concentration on the photocatalytic degradation 
is illustrated in Table 2. It was observed that the phodegradation efficiency 

as a function increasing pollutant concentration. At 50, 100, 200 and 400 
mg/l LDPE and PVC concentrations the yields recorded between 98-99% 
and 95-96%, respectively for LDPE and PVC.  When the pollutant 

concentrations were incresed to 500 and 700 mg/ irradiation was not 
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adequate to complete the degradation of the pollutants. The yields of 
pollutants decreased to 85-89% and to 79-75% for LDPE and PVC [34,35]. 

 

LPDE and PVC concentrations ( mg/l) LDPE Photodegradation yields(%) PVC Photodegradation yields(%) 

50 99 97 

100 98 98 

200 99 97 

400 99 98 

500 89 79 

700 85 75 

Table 2: Effect of pollutant concentration on the photodegradation yields 

Effect of surface area  

The PB nanocomposite surface area significantly affects the pollutant 
removal efficiencies during the photodegradation during photocatalysis. The   
activity of PB depends on on the holes and electron during activation of PB 
nanocomposite. Small particle sized PB nanocomposite (10 nm) sizes 

translate to reduced distance tranferring the electrons and holes during 

photocatalysis ending with high LDPE and PVC photodegradation yields 
(99% and 96%) (Table 3). PB Nanocomposites with a size 40 nm the PB 
exhibited high photodegradation yields (98% and 95%).  

In this study negligible weight losses were observed for PB nanocomposite 
resulting in, surface area effect of photodegradation yields was not 

significant.  

PB anocomposite size (micron) 
and surface area ( m2/m 

LDPE Photodegradation 
yields(%) 

PVC Photodegradation yields 
(%) 

10, 0,098 99 96 

40, 0,178 90 82 

100, 0,234 88 79 

Table 3: Effect of nanocomposite size and surface on the photodegradation yield 

Effect of temperature  

The temperature was increased from 20 oC up to 25, 30 and 40 Oc. At 20 oc 
the PLDE and PVC yields was accounted as 94% and 97%, respectively. As 
the temperature was increased to 40 Oc the LDPE and PVC yields reached 

to a maximum (99% and 97%) (Table 4). Generally, at high temperatures 
like 80°C, there is ecombination of charge carriers, ending with inhibition of 
photodegradation. As the temperature was increased to 40°C the 
photocatalytic activity increased since the kinetic energy for the reactive 
species elevated [36].   

Temperature (Oc) LDPE Photodegradation yields 
(%) 

PVC Photodegradation yields 
(%) 

20 72 70 

25 88 83 

30 90 86 

40 99 97 

80 60 52 

Table 4:  Effect of temperature on the photodegradation yields 

Effect of pH 

The formation of reactive oxidizing species by photocatalyst depends to pH. 
The pH influences the electrical double-layer charge at the solid electrolyte 
interface, affecting the formation of the electron–hole pairs on the surface of 

the photocatalyst [32-34]. Variation in pH modifies the potentials of catalytic 
processes. The surface of PB nanocomposite is positively charged at pH= 5 
and negatively charged in apH of 8 (Table 5). LDPE and PVC exhibited 
crystalline structure and exhibited high photodegradation yields at pH=5.  

PB nanocomposite concentration ( mg/l) LDPE Photodegradation yields(%) PVC Photodegradation yields(%) 

4 89 85 

5 99 96 

6 93 90 

7 67 60 

8 45 40 

Table 5: Effect of pH on the photodegradation yields 

Effect of sun ligth 

The wavelength and intensity of sunligth affect significantly the the 
photodegradation of   LDPE and PVC. The sun light is stronger than visible 
light because its waves are shorter than those of visible light.  Therefore, it 
has higher efficiency in the photo degradation of microplastics. The number 
of photons available for activating the catalyst surface was relevant with sun 
intensity. The lower the intensity, the lower the activation energy; as a result,  

 

low photodegradation efficiency is observed. With an increase in intensity, 
more active sites are activated increasing the interactions between the 
catalyst and the adsorbed substrate on its surface, hence higher degradation 
rates are attained.  In this study it was found that the photodegradation yields 
of LDPE and PVC were   maximum at a sun ligth intensity of 50 W/ m2 
compared to 20 W/m2 (Table 6)  

Sun Ligth (W/m2) LDPE Photodegradation yields(%) PVC Photodegradation yields(%) 

20 62 58 
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30 84 80 

40 90 85 

50 99 96 

Table 6: Effect of sun power on the photodegradation yields 

Conclusions  

In this study two microplastics namely low-density polyethylene (LDPE), 
and polyvinyl chloride (PVC) was photodegraded by porous sulfur polymer 
nanocomposite under optimized conditions. High photodegradation yields as 
high as 99% and 97% was detected for LPDE and PVC, respectively. This 
nano composited can be suggested to the photo removal of other 

microplastics degraded with difficulty at short times.  
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