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Abstract 

Phonocardiography provides the clinician with a complementary tool to record the heart sounds heard during 
auscultation. This paper presents an algorithm for the detection of heart sounds (the first and second sounds, S1 and S2) 
and heart murmurs.  

Secondly the heartbeat cardiac sounds represented by the phonocardiogram (PCG) signal once segmented is one of the 
useful approaches to explore cardiac activity and extract many features to help researchers develop techniques that can 

be used for the medical treatment of several heart diseases.  

For people affected by a heart activity problem, it is a serious health problem that requires special care. In this paper, 
importance is given to heart murmurs and their severity to show their impact on heart rate. Heart murmurs are very 
widespread pathologies in the world and depending on their severity they could constitute. 

This paper is concerned to the segmentation of heart sounds by using state of art Hidden Markov Models technology 
which used to extract a smooth envelogram which enable us to apply the tests necessary for temporal localization of 
heart sounds and heart murmurs. 

Keywords: hidden markov models; HMM, envelope; segmentation; algorithm; cardiac frequency; murmur; pathology; 
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1. Introduction 

The heart is a principal organ which assures a blood circulation. Under 

normal conditions, the heart provides two major audible sounds (S1 and S2) 

for each cardiac cycle. Two other sounds (S3 and S4), with lower amplitude 

than S1 or S2, appear occasionally in the cardiac cycle by the effect of 

diseases or age [1]. The first heart sound S1, corresponding to the beginning 

of ventricular systole, is due to the closure of atrioventricular valves (Figure 

1). 

 

Figure 1. Time representation of the normal PCG signal (S1 and S2) 
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This First sound is composed of two internal components: the mitral 

component (M1) associated with the closure of the mitral valve, and the 

tricuspid component (T1) associated with the closing of the tricuspid valve 

[2]. The second heart sound, marking the end of ventricular systole and 

signifying the beginning of the diastole, is made up of two components: the 

aortic component (A2) corresponding of the closure of the aortic valve, and 

the pulmonary component (P2) corresponding of the closure of the 

pulmonary valve [2]. Valvular pathologies induce significant changes in the 

morphology of the Phonocardiogram Signal (PCG) [3]. On the other hand, 

systolic and diastolic murmurs of different shapes can be added to the PCG 

signal to build a track resulting from a given disease.The PCG signal is 

then a support of information to value by digital processing in order to 

better appreciate the pathologies to can be processed more easily. The 

energy of the PCG signal can prove therefore very important in the study 

of the cardiac cycle [4]. In the time domain, such representation allows us 

to appreciate the length of each heart sound, systolic and diastolic phases 

and the cardiac cycle. 

Time-frequency analysis and classification of the PCG signals have been 

studied by several authors [5]. Before any analysis, the PCG signal needs to 

be segmented into components (sounds or murmurs), and then the 

components are analyzed separately. Some attempts to segment the PCG 

signal have been reported in the literature, but the majority of them depend 

on reference to the Electrocardiogram (ECG) signal [6-8], but a major 

disadvantage of this approach is that the timing between electrical and   

mechanical activities in a cardiac cycle will not be exactly constant for all 

patients because of a variety of pathological conditions [8]. 

The aim of this study is to develop an algorithm for heart Sound and 

heart murmur segmentation using the PCG signal as the only source. PCG 

signals have internal components of very close frequency bands. Fast 

Fourier Transform (FFT) provides valuable frequency information, but the 

timing information is lost during the transformation process [9]. Discrete 

Wavelet Transform (DWT), in using the band filter during PCG analysis, 

takes account only of the bandwidth of these filters. 

In the context of analyzing other methods above, Zhihai Tu et al. [10]. 

presented a method of heart sounds (S1 and S2) extraction    using Hilbert 

transform envelope. 

Hhowever Hu Xiao-Juan et al. [11], had used this kind of envelope for the 

extraction of features of heart sounds. The Hilbert transform envelope also 

provides the possibility to analyze the internal components of heart sounds; 

it’s the only envelope able to detect the S1 and S2 split and extract their 

internal components [12]. 

Segmentation refers to the detection of major events in the cardiac cycle, 

such as the first and second sounds that are audible, pathological noises 

that can be added to the PCG signal during the systolic and diastolic 

phases. Several segmentation methods have been developed; some use the 

ECG signal and the carotid pulse as a reference [13, 14]. others are based 

only on the PCG signal. The majority of these methods are based on the 

information conveyed by the envelope detection of the PCG signal; where 

the latter crosses a predefined threshold. 

These methods include envelope extraction using discrete decomposition 

and wavelet reconstruction [15]. or the use of magnitude of the analytical 

signal formed using the PCG signal and its “Transform Hilbert” [16, 17]. 

or by calculating the energy of Shannon [18]. However, these methods can 

lead to several problems such as the lack of low energy events such as the 

cardiac click which is not always clear by the signal envelope or detection 

of artifacts at high energy as cardiac activity, or the detection of additional 

peaks which come from split S2. A probabilistic method has been proposed 

in the literature for automatic segmentation of the phonocardiogram signal; 

it is the Hidden Markov model (HMM), which is based essentially on the 

envelope of the homomorphic filtering which makes it possible to 

generate a smooth envelope facilitating the extraction of the characteristics 

of the signal [19-21] showing the entrance to the HMM. 

The parameters of the model are also estimated from the envelope used, the 

output of the HMM is the optimal sequence of states which maximizes the 

probability that the state at time t generates the observation which is the 

input of the model. Note that the states of the HMM are the areas of interest 

of the signal like heart sounds. In this paper we will study this method 

(HMM), trying to improve the characteristics extracted from the 

homomorphic envelope in order to improve the estimation of the model. 

Based on this method, we will try in this study to develop an 

algorithm for separation of heart sounds and heart murmurs; which 

works by creating the analytic signal of the input by using the Hidden 

Markov Models technology which used to extract a smooth envelogram 

which enable us to apply the tests necessary for temporal localization of 

heart sounds and heart murmurs. In the scope of this segmentation 

difficulty the well-known non-stationary statistical properties of Hidden 

Markov Models concerned to temporal signal segmentation capabilities 

can be adequate to deal with this kind of segmentation problems. 

After the segmentation of the phonocardiogram signal by using the 

Hidden Markov Model (HMM) we are going to study the variation in 

the heart rate under the effect of the importance of the murmurs added 

to PCG signal caracterizing a cardiac pathology.  

To this end, this work aims to take the following steps: 
1. Extract heart murmurs from a pathological PCG signal 
2. Calculate their severity based on the energy ratio (ER) 

3. To study the impact of murmur severity on heart rate variability. 

2 Materials and Methods 

2.1    Theory of the HHM model 

A Hidden Markov Model (HMM) is a probabilistic state machine where the 
states of the machine are unobservable, but the outputs of the state machine 
are observable. A Hidden Markov model has the ability to provide signal 
equivalents with discrete or continuous responses. 
An example of a discrete HMM is a HMM that models the series of heart 
sound labels over time. An example of a continuous HMM is a HMM that 
models the Shannon energy feature over time. 

The cardiac signal can be modeled by putting it equivalent to an HMM 
having four outputs (levels). The first will correspond to the first heart sound 
S1, the second relates to the duration of the systole, the third will correspond 
to the second heart sound S2 and finally the last corresponds to the si diastolic 
period (Figure 1). The model in question in this four-level work is useful for 
representing the different signal events; Furthermore, it is very simplistic to 
accurately model the transitions between bcardiac noises and intermediate 
durations. One possibility is to use a second HMM model within each of the 

signal states studied. The embedded HMM models the signal as it traverses 
a specific labeled region of the signal. Using this combined approach, we can 
model both the highlevel state sequence of our signal (S1-sil-S2-sil) and the 
continuous transitions of the signal. This type of model is similar to how a 
speech processing system has a highlevel probabilistic grammar to model the 
transition of words or phonemes, and an embedded HMM for each phoneme 
[22]. 
All of the experiments utilized an eight state HMM for the S1 sounds, a six 

state HMM for the S2 sound, and a three state HMM for each silence period. 
The number of sequences was calculated by using the average duration of 
each heart sound and dividing it by the duration of the frame. For example, 
S1 noise has an average duration of 160 milliseconds and the frame step size 
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is 20 milliseconds; therefore, it can be represented by eight states (160 ms / 
20 ms=8). 
 In addition, the experiments utilized a four state grammar that represented 
the state model given in Figure 2. The probabilities for this model were 

learned using a discrete HMM where the label files were used to train the 
model. The resultant HMM represents the symbol transitions of the 
phonocardiogram. This is to translate the discrete HMM model into a 
combination for use with the HTK toolset [23]. 

 

Figure 2. Heart sound Markov 

Two different methods to measure system capabilities were used: frame error 

rate and pattern error rate. To obtain the frame error rate, we compare each 

frame of the labeled signal to the output signal 

We calculate the error rate of the system by dividing the number of 

mismatched frames by the total number of frames in the system. To determine 

the model error rate, we calculate the center of the heart sound label and 

the center of the learned heart sound, and calculating the difference between 

these centers.  

The system notes a successful labeling if the delta value between these 

centers is less than 50 milliseconds. Then, the error rate is the number of 

mismatched S1 or S2 labels divided by the total number of sound labels in 

the system. 

We can measure frame error rate and pattern error rate simultaneously to 

verify and control system training and system validation. Since there were 

only clean records for eight patients, an eight-way cross-validation was done 

Finally, the noisy files were validated against the model where the model was 

trained with only clean files. 

2.2 Viterbi algorithm 

The Viterbi algorithm (Figure 3) has been called "Andrew Viterbi", since 
1967 as a decoding algorithm for convolutional codes over noisy digital 
communication links   [23, 24]. It has, however, a history of multiple 
invention, with at least seven independent discoveries, including those by 
Viterbi, Needleman and Wunsch, and Wagner and Fischer [25, 26]. 

 
Figure 3. PCG signal segmentation algorithm by using the HHM model. 

 
As an example, in statistical analysis, a dynamic programming algorithm can 
be employed in order to find the most possible context-free derivation 
(analysis) of a string, commonly called "Viterbi analysis" [27-29]. A second 

application is in target tracking, where the trail is computed that assigns 
maximum likelihood to a sequence of observations [30]. 

The idea is to use a re-estimation procedure which gradually refines the 
model according to the following steps: 

• Choose an initial set Λ0 of parameters. 

• Calculate Λ1 from Λ0, then Λ2 from Λ1, etc. 

• Repeat this process until an end criterion. 

For each learning step p, we have Λp and we look for a Λp + 1 

which must verify: 

P (O | Λp+1) ≥ P (O | Λp)   
   

  (1) 

It is now a question of determining the best path corresponding to the 
observation, that is to say of finding in the model Λ the best sequence of 
states Q, which maximizes the quantity P (Q, O | Λ). 

To find Q= (q1, q2, QT) for a sequence of observations O= (O1, O2, OT), 

we define the intermediate variable δt (i) as the probability of the best path 
leading to the state if at time t, being guided by the first t observations 

δt(i) = Max P (q1, q2, . . .,  qt = si, O1, O2, . . .,  O t  | Λ) 
   (2) 

By recurrence, we calculate 

δt+1(j) = [Max δt(i) aij] bj(Ot+1)   
   
  (3) 

By keeping track, during calculation, of the state sequence which gives the 

best path. We use a variant of dynamic programming, the Viterbi algorithm 
to formalize this recurrence. It provides as output the value P* of the 
probability of the emission of the sequence by the best sequence of states (q * 
1, • • •, q * T). The Argmax function allows you to store the index i, between 1 
and n, with which you reach the maximum of the quantities (δt(i) aij)). The 
cost of operations is also in Θ (n2T). 

2.3 Extraction of the murmur 

The normalized average Shannon Energy envelogram is used for detected 
and to delimit the beginning and end of each heart sound with a threshold set 
from the maximum value of the envelope, the location of the heart sounds 
S1 and S2 will enable us thereafter to extract the heart murmurs using a 
threshold selection of them. The aim of this paper is time measurement of 
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the sounds and the cardiac period and the interpretation of the impact of 
murmurs on the PCG signal 

  

a) Extraction of the murmur and the sounds S1 and S 

 

b) Separation of the sounds S1 and the sound S2 

Figure 4: By use the segmentation technic proceed  

Murmur extraction has been performed before by using the segmentation 

technique by calculating the envelope of the absolute value of the PCG signal 

in order to define the beginnings and endings of sounds S1 and S2 and heart 

murmurs. By eliminating the sounds S1 and S2 the murmur can be isolated 

on its own in order to carry out a specific treatment 

2.4 Classification of severity of aortic stenosis by factors measured at the 

clinical level 

The severity of cardiac pathologies has been calculated by several methods 

in the literature. 

This classification is carried out in a normal cardiac output [25]. The table1 

below shows the results of this method. 

 

Table1: Classification of severities according to TPGmax , TPGmoy  and  Velocitymax 

Where 

TPGmax : the maximum pressure gradient 
TPGmoy : average pressure gradient 
Vélocitémax : maximum blood velocity 
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The main limitation of this technique is its dependence on transvalvular flow. 

In patients with severe ventricular dysfunction, and low cardiac output, it is 

then difficult to determine the severity of aortic stenosis from the pressure 

gradient alone, since it is similar to that of a subject with aortic stenosis mild 

or moderate. 

The American Herat Association (AHA) and the American College of 

Cardiology (ACC) therefore recommend using effective valve area to 

quantify the severity of aortic stenosis [26]. An aortic valve becomes 

significantly stenotic if its effective area is less than approximately 1/4 of its 

normal value [26]. The effective area of a normal adult aortic valve is 3 − 4 

cm2. According to the AHA/ACC criteria, aortic stenosis is considered: 

• Lightweight if    EOA > 1.5 cm2   

• Moderate if i   1.0 cm2   < EOA ≤ 1.5 cm2   

• Severe if EOA ≤ 1.0 cm2  

A valve area greater than 2 cm2 generally denotes a non-stenotic valve. In 

patients with low cardiac output, the valve may not open to its full capacity 

due to the presence of a low-pressure gradient. The value obtained from the 

EOA may tend to overestimate the severity of the aortic stenosis. It is 

therefore advisable to increase the patient's cardiac output, by injecting him 

with dobutamine, during the echocardiography examination. 

2.5   Estimation of cardiac severity  

Several works have been carried out in this context, the most striking being 

that of Dosik Kim and Morton E.Tavel [27]. In this study, they carried out a 

spectral analysis on the murmurs of a group of patients with cardiac 

pathology in order to assess its severity. 

Design: An electronic stethoscope was used to generate spectral analysis of 

murmurs in patients with aortic stenosis. The durations of the spectra at 

different frequencies (i.e., 200, 250, and 300 Hz) were correlated to mean 

and peak pressure gradients derived from echographe Doppler. The latter 

found that the maximum pressure gradient measured by Doppler 

echocardiography ranged from 15.3 to 185 mm Hg with an average of 63 

mm Hg. The duration of the spectra > 300 Hz correlated better with the 

maximum pressure gradient measured at using the Doppler echocardiogram 

(Table 2) summarizes the results of this work: 

Degree of severity TPGmax Duration of murmur at 300 Hz 

Lightweight < 40 mmHg < 0.16 sec 

Moderate 40-65   mmHg 0.16-0.20 sec 

Severe > 65 mmHg > 0.20 sec 

Table 2. Classification of severities according to TPGmax and murmur duration at 300Hz 

 Classification of severities according to TPGmax and murmur duration at 300Hz (Figure 5) 

 

Figure 5. Time-frequency representation of a heart murmur. The horizontal line indicates the frequency at 300 Hz, the two vertical lines indicate 

the duration of the murmur measured at this frequency.Patients: Forty-one patients (age range: 45-94 years; mean age: 68 years) 

F.Meziani et al [28] have proposed a method which is based on the time-
frequency representation provided by the application of the continuous 

wavelet transform (TOC) on a pathological PCG signal. From this 
representation the frequency rate TΔF (%) is calculated, as being a quantity 
which reflects the total frequency dominance of the murmur on the heart 
sounds, the frequency range of the murmur presents an important indicator 
on the severity of the PCGs signals. The TΔF (%) is given by the following 
equation: 

𝑇∆𝐹 =
∆𝐹𝑆𝑜𝑢𝑓𝑓𝑙𝑒

∆𝐹𝐵1+∆𝐹𝐵2+∆𝐹𝑆𝑜𝑢𝑓𝑓𝑙𝑒
                                                                                                 

ΔFSouffle : the frequency range of the murmur 

ΔFB1 : the frequency range of Sound S1 

ΔFB2 : the frequency range of the Sound S2 

Unfortunately, this technique also has a limitation and shows the inability of 

the frequency range and the maximum frequency in the reliable monitoring 
of the evolution of the severity of some case (immersed breath). 

Rijil Thomas et al [29] presented a method to quantify mitral regurgitation 
(MR) using the PCG signal. Mitral regurgitation is one of the most common 
cardiovascular diseases associated with a mitral valve defect. A multifractal 
analysis on the nature of heart sounds with breath tracking was performed. 

Thus, they were able to classify patients' MR severities by correlating the 
complexity of heart sounds at four main auscultation sites, using a 
complexity analysis tool called singularity spectra. The simulation results 

show that the method can quantify the severity of MR using PCG. 
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2.4 Calculation of degree of severity 

The results obtained in previous work on heart rate variability encouraged us 
to carry out an extensive study on murmurs and their impact on heart rate 
variability. By taking advantage of the particularity of the phonocardiogram 
signal which carries a lot of information on heart murmurs, something that 
is missing in the electrocardiogram signal. 

In this aspect, it should be pointed out that murmurs are not always innocent 
and, in some cases, they are very dangerous and require urgent medical 

intervention, which is why this chapter gives primary importance to 
determining the severity of the murmurs and their impact on heart rate 
variability. An algorithm has been designed to extract features to better 
understand this phenomenon. This algorithm is based on two essential steps: 
the extraction of breaths and the calculation of gravity. 

In this aspect, it should be pointed out that murmurs are not always innocent 
and, in some cases, they are very dangerous and require urgent medical 
intervention, which is why this chapter gives primary importance to 
determining the severity of the murmurs and their impact on heart rate 

variability. An algorithm has been designed to extract features to better 
understand this phenomenon. This algorithm is based on two essential steps: 
the extraction of murmurs and the calculation of gravity. 

Once the murmurs have been extracted, they are classified according to their 
severity. There are many techniques for calculating severity. But 
unfortunately, these techniques have limitations either by their clinical 
dependence where the patient must be present at the clinical level to practice 
invasive techniques, or they do not give all the information about the 

murmurs because the chronology does not reflect the intensity of the 
murmur, that is why, in this study, we try to apply a method exploring the 
real severity of murmur 

The severity calculation process relies on the calculation of energy as an 
important factor in defining the total presence of the murmur over the cardiac 
cycle by comparing it to the energy of the other main sounds S1 and S2. 
Based on previous studies [30-34] which have shown that the energy ratio is 
a fair index and a useful argument for severity classification, the ER energy 

ratio is given by the following equation: 

ER =  
𝐸𝑚𝑢𝑟𝑚𝑢𝑟

𝐸𝑠1+𝐸𝑚𝑢𝑟𝑚𝑢𝑟+𝐸𝑠2
                                                                

Shortness of murmur is the energy of the murmur, ES1: the energy of the 
first heart sound S1, ES2: the energy of the heart sound S2. Blasts are 
graded by multiplying RE by 100 to get a percentage so that is between: 

• 1% <RE <30% is considered as a Lightweight murmur 

• 30% <RE <70% is considered as a moderate murmur 

• 70% <RE <100% is considerate as severe murmur  

Heart Sounds Cardiac Abnormality Database is from [35-36]. 

3.Results and Discussion 

3.1 Analysis of the signal PCG by using the HHM model 

Our HMM hidden Markov model applied to the different PCG signals is 
defined by 4 states: S1 and S2 sounds and the systolic and diastolic phases 

which can be silent or which can correspond to different heart murmurs. 
The envelope resulting from homomorphic filtering, we allow to extract the 
best characteristics of the PCG signal for a better observation sequence. 
Given the following observation, we can determine the parameters of the 
Markov model Λ = {aij, μj, j, πi}. Therefore, we can establish the best state 
sequence by applying the Viterbi algorithm. The durations of heart sounds 
S1 and S2 as well as the systolic and diastolic phases were well estimated 
(Figure 3). 

Table 3 provides the segmentation results of the PCG signals by using the 
HMM technic. 

• The PCG signals with murmur contain S1 sound which has duration 
greater than that of B2 sound, as well as shorter systolic phase than 
diastolic. 

• From Figure 6 at Figure 9 note that the application of HMM has given 
satisfactory results for the discrimination of the different components 
of PCG 

• signals.  

 Duration of 

the sound S1 

(s) 

Duration of 

the sound S2 

(s) 

Duration of the 

murmur (s) 

Duration of 

the Systole 

(s) 

Duration of 

the diastole 

(s) 

Normal signal 

PCG 

N 0.08 0.06  0.18 0.34 

 
 
 

 
PCG signals of 

the systolic 

murmur 

LS 0.11 0.098 0.13 0.22 0.34 

MP 0.08 0.06 0.22 0.22 0.26 

AS1 0.06 0.04 0.27 0.3 0.28 

AS2 0.062 0.049 0.18 0.24 0.38 

PAS 0.109 0.095 0.22 0.22 0.36 

EM 0.06 0.04 0.11 0.18 0.76 

MR 0.06 0.04 0.26 0.26 0.56 

ASD 0.08 0.1 S-S 0.16 0.2 0.36 

   S-D 0.17   

PCG signals of 

the diastolic 

murmur 

AG 0.08 0.07 0.03 0.2 0.36 

DR 0.09 0.08 0.32 0.16 0.4 

Table 3: Durations of the sound S1, S2 and systolic and diastolic phases. 

A vigorous determination of the HMM parameters generate a clear 
segmentation of the PCG signals, this allows us directly to access the durations 
of the various components of the signal. Our HMM made it possible to 

segment a large number of PCG signals with global decision without the 
obligation to use thresholds, however; it should also be noted that this 
algorithm is incapable of segmenting certain PCG signals (Figures 6-8).  
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Figure 6. Segmentation of normal PCG signals. a) normal Signal PCG, b) standardized envelope by using homomorphic filtering c) localisation 

of S1 and S2 by HMM, d) sound S1, e) Sound S2 

 

Figure 7. Segmentation of pathological Signal PCG case « MP »: mitral pro- lopase, a) Pathological Signal PCG (MP), b) standardized envelope 

by using homomorphic filtering, c) localisation of S1 and S2 by HMM, d) sound S1, e) Sound S2.  
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Figure 8. Segmentation of pathological Signal PCG case « OS »: Opening Snape, a) Pathological Signal PCG (OS), b) standardized envelope 

by using homomorphic filtering, c) localisation of S1 and S2 by HMM  

3.2 Severity analysis of the PCG signals 

Better understand this phenomenon; we did an extended study to show the 

severity of systolic and diastolic murmurs and to assess their impact on heart 

rate variability, which can be considered an excellent factor for the general 

health of the human body. 

 

Figure 9: Segmentation of pathological Signal PCG case « AS »: Aortic ste- nosi, 
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a) Pathological Signal PCG (AS), b) standardized envelope by using 

homomorphic filtering, 

 c) localisation of S1 and S2 by HMM, d) sound S1, e) Sound S2 

The table 4   below shows the results beyond the calculation of RE for the 

case of AS and the same work was applied to the other pathologies SMP, 

Ms and AR. Certain characteristics were extracted in order to determine 

the impact of severity on heart rate variability, which is defined as the heart 

rate the inverse of the duration T between two successive peaks of the first 

heart sound S1 (fig.3) as given by the equation below: 

 

 

 

 

 

 

 

 

 

 

Table 4: Classification of severities according to the energy ratio RE for an aortic stenosis (AS). 

The same work was done for the SMP, MS and AR cases. This study reveals 

that very interesting results can be organized on three points: the calculation 

of the severity of the murmur, the impact of this severity on cardiac 

variability and the link between the duration of the murmur on the cardiac 

cycle and its severity. 

Figures 10 at Figure 13 present the influence of murmur severity ordering a 

murmur: light, moderate and severe on heart rate fluctuation. On the same 

figures (type b. figures) the curves present 

Table 4 shows the effectiveness of using the RE energy ratio as an effective 

procedure for staging cardiac pathology between mild, moderate, and severe 

pathology, the latter requiring special monitoring and care or emergency 

medical intervention.  

3.3 The impact of pathological severity on heart rate variability 

The heart rate variability presented by the heart rate normally fluctuates 

around 1.2475 Hz for healthy people who do not present any pathology. the 

heart murmur in general affects this variability: according to figure 10 the 

heart rate of the AS case is not affected too much until the degree of murmur 

becomes severe, which means perceptible heartbeats and unpleasant This 

phenomenon is related to the damage of the aortic valve in which the surface 

of passage of blood flow is very reduced which leads to a low flow of blood 

to the whole body, for this purpose the heart catches up with blood 

circulation by a double effort to pump the blood through the body. Experts 

classify severe aortic stenosis as a very serious heart problem worldwide and 

unfortunately can lead to death in many cases. The heart rate of the 

‘SMP’ and ‘AS’ cases increase according to the severity (figure 10 and 

Figure11), but it remains lower than the average value of a normal case, 

which led us to conclude that the severity of the systolic murmur affects the 

heart rate variability by increasing it. However, this influence depends on the 

pathology itself. 

 

Figure 10: cardiac frequency   according the severity of the “AS case”.by Histogramme representation 

Subjects ER % Cycle duration (second) Cardiac frequency Fc (Hz) severity 

1 93.49 0.2477 4.03 Severe 

2 91.5 0.2489 4.01 Severe 

3 90 0.2521 3.93 Severe 

4 89 0.2580 3.87 Severe 

5 62 0.7863 1.2718 Moderate 

6 49.8 0.8722 1.1494 Moderate 

7 48.4 0.7863 1.2728 Moderate 

8 48.2 0.6562 1.5352 Moderate 

9 36.23 0.8688 1.1513 Moderate 

10 36.05 0.8677 1.1524 Moderate 

11 22 0.9684 1.0327 Lightweight 

12 13.47 0.7875 1.2698 Lightweight 

13 13.12 0.7760 1.2886 Lightweight 

14 11.13 0.7627 1.3111 Lightweight 

15 3.33 0.7475 1.3411 Lightweight 
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Figure 11:  cardiac frequency according the severity of the “SMP case”. 

 By Histogramme representation  

For the ‘MS’ and ‘AR’ cases (diastolic murmurs) shown in (Figure12 and Figure 13), they show a specific attitude in their curve whose heart rate 

increases at certain point and decreases again. This particular behavior is usually between 60% and 70%. From RE, where the heart rate is quite 

remarkable in this interval and slightly affected. 

 

Figure 12:  cardiac frequency according the severity of the “MR case”. 

by Histogramme representation 

 

Figure 13: cardiac frequency according the severity of the “AR case”. 
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By Histogramme representation  

4. Conclusion 

The main objective of the work described in this paper was to develop 

a robust segmentation technique for segmenting the phonocardiogram into 

its main components. HMM’s PCG signal segmentation method generates 

excellent results, especially for pathological signals with complex 

murmur morphology. The use of the homomorphic envelope is very important 

for the extraction of the characteristics which present the Markov model. 

It is a method that eliminates pathological noises or sometimes attenuates 

them by comparing them to that of the sounds S1 and S2 which favors the 

maximization of probability of generating the best sequence of states. 

Heart murmurs are a serious health problem worldwide and the 

phonocardiogram signal is a very interesting approach to extracting so much 

information about murmurs. In this study, we tried to focus on severity and 

its impact on heart rate variability. Energy ratio (ER) has been shown to be 

effective as an important process for calculating heart murmur severity stage 

and classifying it according to RE into mild, moderate and severe murmurs.  

The study reveals a very interesting result regarding the influence of severity 

on heart rate where systolic murmurs increase it in a specific way depends 

on each case. However, it should be noted that a severe case of AS greatly 

affects the heart rate, which will lead to a very serious heart problem can lead 

to death. In addition, pathologies with diastolic murmurs have attracted 

attention by their particular variation in heart rate over a severity zone of 

60% to 70%, which is due to the nature of the diastolic pathologies 

themselves.  

In addition, it has been confirmed that the duration of the murmur cannot 

constitute an adequate criterion for judging the severity and must always be 

verified by another method. 
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